

Задания 9 класса

Представлен один из возможных вариантов решения заданий

Задача №9-1

1. Исходя из описания физических и химических свойств простых веществ, несложно догадаться, что речь идет о неметаллах третьего периода ПСХЭ:

$$X = S$$
 (сера), $Y = Cl$ (хлор), $Z = P$ (фосфор).

В периоде ПСХЭ радиусы атомов увеличиваются справа налево, т.е. в ряду $Cl \to S \to P$.

- 2. Сера и фосфор имеют несколько аллотропных модификаций, хлор же способен существовать лишь в виде молекулы $\mathbf{Cl_2}$, представляющей желтозеленый газ \mathbf{B} . Тогда можно рассчитать молярные массы простых веществ серы и фосфора.
- $M(\mathbf{A}) = 71 \times 3.6056 = 256$ г/моль, что соответствует ромбической сере $\mathbf{S_8}$ порошку лимонно-желтого цвета.
- $M(\mathbf{C}) = 71 \times 1.7465 = 124$ г/моль, что соответствует белому фосфору $\mathbf{P_4}$ воскообразному веществу белого цвета с желтоватым отливом.

Таким образом,

 $A - S_8$

 $B - Cl_2$

 $C - P_4$

(на данном этапе задачи указание индексов для молекул всех простых веществ является обязательным)

$$3S_8 + 48KOH = 16K_2S + 8K_2SO_3 + 24H_2O$$
 (1)

Или
$$3S + 6KOH = 2K_2S + K_2SO_3 + 3H_2O$$

$$3Cl_2 + 6KOH = 5KCl + KClO_3 + 3H_2O$$
 (при нагревании) (2)

$$P_4 + 3KOH + 3H_2O = PH_3\uparrow + 3KH_2PO_2$$
 (3)

Бесцветный ядовитый газ, выделяющийся в последней реакции – фосфин PH_3 .

3. В реакции 3 образуется соль фосфорноватистой кислоты H_3PO_2 (кислота D).

При взаимодействии фосфора с хлором могут образоваться хлориды фосфора (III) и (V), которые при обработке щелочью гидролизуются с образованием солей фосфористой (H_3PO_3 , кислота E) и фосфорной (H_3PO_4 , кислота F) кислот.

$$P_4 + 6Cl_2 = 4PCl_3$$
 (или $2P + 3Cl_2 = 2PCl_3$) (4)

$$P_4 + 10Cl_2 = 4PCl_5$$
 (или $2P + 5Cl_2 = 2PCl_5$) (5)

$$PCl_3 + 5KOH = K_2HPO_3 + 3KCl + 2H_2O$$
 (6)

$$PCl_5 + 8KOH = K_3PO_4 + 5KCl + 4H_2O$$
 (7)

Структурные формулы кислот:

4. При взаимодействии серы с фосфором могут образоваться различные сульфиды фосфора. Определим брутто-формулу соединения \mathbf{G} состава P_xS_y , воспользовавшись данными о массовой доле серы (более тяжелого элемента в сравнении с фосфором).

$$x : y = 56.36/31 : 43.64/32 = 1.818 : 1.364 = 1.333 : 1 = 4 : 3$$

Таким образом, соединение $G-P_4S_3$

Продуктом *реакции* 2, используемым в производстве спичек, является бертолетова соль (хлорат калия) КСlO₃. При поджигании спички протекает реакция:

$$3P_4S_3 + 16KClO_3 = 6P_2O_5 + 9SO_2 + 16KCl$$
 (8)
Разбалловка

Элемент ответа	Баллы
Символы элементов Х, Y, Z	3x0,56.=1,56.
Правильный порядок увеличения радиусов	16.
Формулы веществ А, В, С	3х0,5б.=1,5б.
Уравнения реакций (1)–(3)	3x0,56.=1,56.
Структурные формулы кислот D – F	3х0,5б.=1,5б.
Уравнения реакций (4)–(7)	4x0,56.=26.
Формула вещества G	0,56.
Уравнение реакции (8)	0,56.
ОПОТИ	10 б.

Задача №9-2

Под описание простого вещества подходит сера:

A – cepa, S

 \mathbf{F} — диоксид серы, \mathbf{SO}_2

$$S + O_2 = SO_2 \tag{1}$$

При пропускании избытка сернистого ангидрида через раствор щелочи должна получаться кислая соль NaHSO₃ (B), что подтверждается расчетами: ω (Na) = 22,11% => M(соли) = 104·x, где x – количество катионов Na⁺.

Для x=1 масса остатка 81 г/моль соответствует аниону HSO_3^-

$$SO_2 + NaOH = NaHSO_3$$
 (2)

При взаимодействии кислой соли с гидроксидом натрия образуется средняя соль Γ (сульфит натрия – Na_2SO_3).

$$NaHSO_3 + NaOH = Na_2SO_3$$
 (3)

Можно предположить, что при взаимодействии сульфита натрия с серой в анион вводятся атомы серы.

 ω (Na) = 29,11% => M(соли) = 79·х, где х – количество катионов Na⁺. Поскольку ранее кислая соль была нейтрализована гидроксидом, то в её сотаве должно быть два катиона натрия, а масса должна составить 158 г/моль, где 112 г/моль приходится на кислотный остаток. Остаток, соответствующий сульфит аниону (80 г/моль) остался в составе, значит на неизвестную часть приходится ещё 32 г/моль, что соответствует введению одного атома серы в состав аниона: Следовательно, вещество Д – тиосульфат натрия $Na_2S_2O_3$.

$$Na_2SO_3 + S = Na_2S_2O_3$$
 (4)

Фиксирование фотопленок основано на реакции:

$$2 \text{ Na}_2 \text{S}_2 \text{O}_3 + \text{AgBr} = \text{Na}_3 [\text{Ag}(\text{S}_2 \text{O}_3)_2]$$
 (5)

А количественное определение йода – на процессе:

$$2 Na_2S_2O_3 + I_2 = Na_2S_4O_6 + 2NaI$$
 (6)

Разбалловка

Написание формул веществ А-Д	5х0,8б.=4б.
Написание уравнений реакций (1)–(4), (6)	5х0,8б.=4б.
Написание уравнений реакции (5)	26.
ИТОГО	10б.

Задача №9-3

Из описания можно сделать вывод, что \mathbf{A} – медный купорос $\mathbf{CuSO_4\cdot 5H_2O}$, он имеет голубой цвет, при умеренном нагревании отщепляет 5 молекул воды (36% массы), при более сильном нагревании образует черный оксид \mathbf{CuO} .

Соль **Б** — нитрат магния $\mathbf{Mg}(\mathbf{NO_3})_2$. Магний входит в состав хлорофилла, при разложении образуется бурый оксид $\mathbf{NO_2}$, который диспропорционирует в воде. Уравнения реакций:

$$CuSO_4 \cdot 5H_2O = CuO + SO_2 + 0.5O_2 + 5H_2O$$
 (1)

$$2Mg(NO_3)_2 = 2MgO + 4NO_2 + O_2$$
 (2)

$$SO_2 + 2KOH = K_2SO_3 + H_2O$$
 (3)

$$4NO_2 + O_2 + 4KOH = 4KNO_3 + 2H_2O$$
 или
 $2NO_2 + 2KOH = KNO_2 + KNO_3 + H_2O$ (4)

$$K_2SO_3 + Sr(NO_3)_2 = SrSO_3 \downarrow + 2KNO_3$$
 (5)

3)
$$n(CuSO_4 \cdot 5H_2O) = n(SO_2) = n(K_2SO_3) = n(SrSO_3) = 12.6/168 = 0.075$$
 моль $m(CuSO_4 \cdot 5H_2O) = n \times M = 0.075 \times 250 = 18.75$ г $n(CuO) = n(CuSO_4 \cdot 5H_2O) = 0.075$ моль $m(CuO) = n \times M = 0.075 \times 80 = 6$ г $m(MgO) = 8 - 6 = 2$ г $n(Mg(NO_3)_2) = n(MgO) = m/M = 2/40 = 0.05$ моль $m(Mg(NO_3)_2) = n \times M = 0.05 \times 148 = 7.4$ г $m(CMCUCO) = 18.75 + 7.4 = 26.15$ г $\omega(CuSO_4 \cdot 5H_2O) = 18.75 / 26.15 = 71.7\%$ $\omega(Mg(NO_3)_2) = 28.3\%$

Разбалловка

Формулы солей А и Б	2x16.=26.
Уравнения реакций 1-5	5x16.=56.
Массы солей А и Б	2x16.=26.
Массовые доли солей А и Б	2x0.56.=16.
ОПОТИ	10б.

Задача №9-4

1) Поскольку кислород содержится в составе сульфат-иона и воды, то можно составить следующее уравнение для нахождения количества кислорода, который входит в состав воды:

$$\omega(O) = \frac{y(O \text{ в воде}) \cdot A(O) + 12 \cdot A(O)}{y(H_2O) \cdot A(H_2O) + A(Fe_2(SO_4)_3)}$$

$$0,5979 = \frac{y(O \text{ в воде}) \cdot 16 + 12 \cdot 16}{y(H_2O) \cdot 18 + 400}$$

$$10,7622 \cdot y + 239,16 = y \cdot 16 + 192$$

$$5,2378 \cdot y = 47,16$$

$$y = 9$$

Таким образом необходимый кристаллогидрат имеет формулу $Fe_2(SO_4)_3 \cdot 9H_2O$ и называется нонагидрат сульфата железа (III).

2) Железо окисляется до степени окисления +3, связываясь в сульфат избытком серной кислоты. Азотная же кислота, судя по описанию, восстанавливается до оксида азота (IV). Окисление протекает согласно уравнению реакции:

$$2FeSO_4 + H_2SO_4 + 2HNO_3 = Fe_2(SO_4)_3 + 2NO_2 + 2H_2O$$
 (1)

3) Раствор кипятят для испарения и разложения избытка азотной кислоты. Разложение протекает по реакции:

$$4HNO_3 = 4NO_2 + O_2 + 2H_2O$$
 (2)

$$M(FeSO_4 \cdot 7H_2O) = 278 \frac{\Gamma}{MOJD}; M(Fe_2(SO_4)_3 \cdot 9H_2O) = 562 \frac{\Gamma}{MOJD}$$

4) В реакционную систему было введено:

$$\dfrac{85}{278}=0,306$$
 моль $FeSO_4\cdot 7H_2O;$ $\dfrac{10\cdot 1,84\cdot 0,96}{98}=0,180$ моль $H_2SO_4;$ $\dfrac{100\cdot 1,35\cdot 0,63}{63}=1,35$ моль HNO_3

Из стехиометрии видно, что лимитирующим реагентом является сульфат железа (II), поэтому при расчете выхода следует ориентироваться на него, и в теории можно было получить $\frac{0,306}{2} = 0,153$ моль нонагидрата сульфата железа (III). Реально образовалось $\frac{71,5}{562} = 0,127$ моль целевого продукта. Следовательно, практический выход процесса равен 0,127/0,153=0,83 или 83%.

5) В ходе анализа протекают следующие реакции:

$$Fe_2(SO_4)_3 + 6NaI = 2FeI_2 + I_2 + 3Na_2SO_4$$
 (допустимо написание в продуктах $FeSO_4$) (3)

$$I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$$
 (4)

По условию, на титрование ушло тиосульфата:

$$\begin{split} &n(Na_2S_2O_3)=C\times V=0.5\times 0.012=0.006\text{ моль}\\ &\Pi\text{оскольку }n(Na_2S_2O_3)=2n(I_2),\text{ a }n(I_2)=0.5n(Fe^{3+}),\text{ то }n(Na_2S_2O_3)=n(Fe^{3+}). \end{split}$$

Тогда, $C(Fe^{3+}) = n/V = 0.006/0.01 = 0.6$ моль/л

Разбалловка

I usouvilobku	
Расчет количества воды в кристаллогидрате, полное на-	2x16.=26.
звание кристаллогидрата	
Написание уравнения реакции (1)	16.
Написание уравнения реакции (2),	2x16.=26.
краткое пояснение необходимости кипячения	
Расчет практического выхода соли	26.
Уравнения реакций (3) и (4)	2x16.=26.
Расчет концентрации Fe ³⁺	16.
ОЛОТИ	10б.

Задача №9-5

1. 2,0 л идеального газа при нормальных условиях содержат $\frac{2,0}{22,4} = 0,0893$ моль молекул. Значит, при сгорании 1 моль метана выделится $\frac{71,6}{0.0893} = 802$ кДж теп-

лоты, а в случае такого же количества водорода $-\frac{25,6}{0.0893} = 242$ кДж. Термохимические уравнения выглядят следующим образом:

$$CH_4 + 2 O_2 = CO_2 + 2 H_2O(\Gamma) + 802 кДж$$
 (1)

$$H_2 + \frac{1}{2}O_2 = H_2O(\Gamma) + 242 \text{ кДж}$$
 (2)

2. При термолизе метан разлагается на простые вещества:

$$CH_4 = C + 2 H_2$$

Взяли $\frac{110}{22.4}$ = 4,91 моль метана. Пусть разложилось x моль углеводорода с образованием $2 \cdot x$ водорода, тогда осталось (4,91-x) моль CH_4 .

Углерод в виде сажи осядет на стенках сосуда, а в газовой фазе останутся лишь водород и метан. Поскольку сожгли половину образовавшейся смеси, тепловой баланс запишется в виде:

$$1772 = \frac{1}{2} \cdot (242 \cdot 2 \cdot x + 802 \cdot (4.91 - x)),$$

Откуда $x = n(CH_4)_{pass} = 1,24$ моль.

$$M(H_2)=2$$
 г/моль, $M(CH_4)=16$ г/моль, тогда
$$\omega(H_2)=\frac{2\cdot 2\cdot 1,24}{2\cdot 2\cdot 1,24+16\cdot (4,91-1,24)}=0,0779$$
 или **7,79%.**

Из уравнения $CH_4 + 2 O_2 = CO_2 + 2 H_2O(\Gamma) + 802 кДж$

согласно следствию закона Γ ecca $Q = 2Q_{ofp}(H_2O) + Q_{ofp}(CO_2) - Q_{ofp}(CH_4)$

Из уравнения $H_2 + \frac{1}{2} O_2 = H_2 O(\Gamma) + 242$ кДж следует, что

 $Q_{\text{обр}}(H_2O) = 242 \text{ кДж/моль, поэтому получим уравнение}$

$$802 = 2 \times 242 + 393 - Q_{\text{обр}}(CH_4)$$
, откуда

 $Q_{\text{обр}}(CH_4) = 75 \text{ кДж/моль}$

Уравнение каталитической конверсии метана:

$$CH_4 + H_2O(\Gamma) = CO + 3H_2$$

Из предыдущих пунктов решения нам известны теплоты образования метана и водяного пара, следовательно, теплота образования угарного газа $Q_{\text{обр}}(CO) =$ 110 кДж/моль.

По следствию из закона Гесса тепловой эффект конверсии:

$$Q = Q_{\text{обр}}(\text{CO}) - Q_{\text{обр}}(\text{H}_2\text{O}(\Gamma)) - Q_{\text{обр}}(\text{CH}_4) = 110 - 242 - 75 = -207$$
 кДж

Написание термохимических уравнений 1,2	2x16.=26.
Количество моль разложившегося метана	26.
Массовая доля водорода в газовой смеси	16.
Теплота образования метана	26.
Уравнение реакции конверсии метана	1б.
Тепловой эффект реакции конверсии	26.
ОТОТИ	106.

Задания 10 класса

Представлен один из возможных вариантов решения заданий

Задача №10-1

1. Исходя из описания физических и химических свойств простых веществ, несложно догадаться, что речь идет о неметаллах третьего периода ПСХЭ:

$$X = S$$
 (сера), $Y = Cl$ (хлор), $Z = P$ (фосфор).

В периоде ПСХЭ радиусы атомов увеличиваются справа налево, т.е. в ряду $Cl \to S \to P$.

- 2. Сера и фосфор имеют несколько аллотропных модификаций, хлор же способен существовать лишь в виде молекулы Cl_2 , представляющей желтозеленый газ **B**. Тогда можно рассчитать молярные массы простых веществ серы и фосфора.
- $M(\mathbf{A}) = 71 \times 3.6056 = 256$ г/моль, что соответствует ромбической сере $\mathbf{S_8}$ порошку лимонно-желтого цвета.
- $M(C) = 71 \times 1.7465 = 124$ г/моль, что соответствует белому фосфору P_4 воскообразному веществу белого цвета с желтоватым отливом.

Таким образом,

 $A - S_8$

 $B - Cl_2$

 $C - P_4$

(на данном этапе задачи указание индексов для молекул всех простых веществ является обязательным)

$$3S_8 + 48KOH = 16K_2S + 8K_2SO_3 + 24H_2O$$
 (1)

Или $3S + 6KOH = 2K_2S + K_2SO_3 + 3H_2O$

$$3Cl_2 + 6KOH = 5KCl + KClO_3 + 3H_2O$$
 (при нагревании) (2)

$$P_4 + 3KOH + 3H_2O = PH_3\uparrow + 3KH_2PO_2$$
 (3)

Бесцветный ядовитый газ, выделяющийся в последней реакции – фосфин PH_3 .

3. В реакции 3 образуется соль фосфорноватистой кислоты H_3PO_2 (кислота D).

При взаимодействии фосфора с хлором могут образоваться хлориды фосфора (III) и (V), которые при обработке щелочью гидролизуются с образованием солей фосфористой (H_3PO_3 , кислота E) и фосфорной (H_3PO_4 , кислота F) кислот.

$$P_4 + 6Cl_2 = 4PCl_3$$
 (или $2P + 3Cl_2 = 2PCl_3$) (4)

$$P_4 + 10Cl_2 = 4PCl_5$$
 (или $2P + 5Cl_2 = 2PCl_5$) (5)

$$PCl_3 + 5KOH = K_2HPO_3 + 3KCl + 2H_2O$$
 (6)

$$PCl_5 + 8KOH = K_3PO_4 + 5KCl + 4H_2O$$
 (7)

Структурные формулы кислот:

4. При взаимодействии серы с фосфором могут образоваться различные сульфиды фосфора. Определим брутто-формулу соединения G состава P_xS_y , воспользовавшись данными о массовой доле серы (более тяжелого элемента в сравнении с фосфором).

$$x : y = 56.36/31 : 43.64/32 = 1.818 : 1.364 = 1.333 : 1 = 4 : 3$$

Таким образом, соединение $G - P_4S_3$

Продуктом *реакции* 2, используемым в производстве спичек, является бертолетова соль (хлорат калия) КСlO₃. При поджигании спички протекает реакция:

$$3P_4S_3 + 16KClO_3 = 6P_2O_5 + 9SO_2 + 16KCl$$
 (8)

Разбалловка

Элемент ответа	Баллы
Символы элементов X, Y, Z	3x0,56.=1,56.
Правильный порядок увеличения радиусов	16.
Формулы веществ А, В, С	3x0,56.=1,56.
Уравнения реакций (1)–(3)	3x0,56.=1,56.
Структурные формулы кислот D – F	3х0,5б.=1,5б.
Уравнения реакций (4)–(7)	4x0,56.=26.
Формула вещества G	0,56.
Уравнение реакции (8)	0,5б.
ОЛОТИ	10б.

Задача №10-2

1. Молярная масса газа B составляет $\frac{16,00x}{0,5712} = 28,00 \cdot x$ г/моль, где x — число атомов кислорода в молекуле. Учитывая токсичность вещества и его способность количественно реагировать с I_2O_5 , делаем вывод, что B — CO.

В таком случае, Б - C (углерод), и протекала реакция восстановления кислородсодержащего минерала.

Выделение газа с неприятным запахом указывает на то, что Γ – сульфид. Тогда вероятно, что вещество A – сульфат. Если степень окисления металла в процессе оставалась постоянной, то

$$1,38 = \frac{M(M_2(SO_4)_a)}{M(M_2S_a)} = \frac{2 \cdot M + 96 \cdot a}{2 \cdot M + 32 \cdot a}$$
, откуда $M(M) = 68 \cdot a$ (г/моль)

При а = 2 подходящим элементом является барий.

Минерал А в таком случае является сульфат бария BaSO₄.

Таким образом, X – барий, A – барит (тяжелый шпат) $BaSO_4$.

2. Буквами зашифрованы следующие вещества:

 \mathbf{F} – углерод \mathbf{C} ;

 \mathbf{B} – CO;

 Γ – BaS;

 $\mathbf{\Pi} - \mathbf{H}_2 \mathbf{S}_1$

 $E - Ba(CH_3COO)_2$.

3. Уравнения реакций:

$$BaSO_4 + 4C = BaS + 4CO$$
 (1)

$$5 \text{ CO} + I_2O_5 = 5 \text{ CO}_2 + I_2$$
 (2)

$$BaS + 2 CH3COOH = Ba(CH3COO)2 + H2S$$
 (3)

4. При прокаливании ацетата бария протекает его разложение с образованием твердого продукта и отгонкой газообразных в условиях опыта веществ.

 $M (Ba(CH_3COO)_2) = 255 \Gamma/моль$

Из уменьшения массы следует, что $M(\mathcal{K}) = 255 \cdot (1-0.2274) \cdot x = 197 \cdot x$ г/моль, где x – число атомов бария в формульной единице.

Массе 197 г/моль подходит карбонат бария, соответственно он является веществом \mathbb{X} , а побочным продуктом реакции является ацетон.

Итак, $\mathbf{W} - BaCO_3$

Уравнение реакции:

$$Ba(CH_3COO)_2 = BaCO_3 + CH_3COCH_3$$

Разбалловка

1	Металл Х	16.
	Формула и тривиальное название минерала А	16.+0,56.=1,56.
2	Формулы веществ Б-Е,	5x0,56.=2,56.
3	Уравнения реакций <i>1–3</i>	3x16.=36.
4	Формула вещества Ж (без расчетов – 0 б)	16.
	Уравнение реакции	16.
	ОЛОТИ	10б.

Задача №10-3

1. Начнем с определения элемента X. Для получения простого вещества, образованного X, используется реакция фторида с магнием

$$XF_n + (n/2)Mg = X + (n/2)MgF_2$$

где n – валентность элемента X.

По уравнению реакции

$$\frac{m(XF_n)}{M(XF_n)} = \frac{n}{2} \cdot \frac{m(Mg)}{A(Mg)} \Rightarrow M(XF_n) = \frac{2m(XF_n) \cdot A(Mg)}{n \cdot m(Mg)} = \frac{2 \cdot 2,35 \cdot 24}{1,2n} = \frac{94}{n}$$

При n = 1, M(XF) = 94 г/моль, A(X) = 75, мышьяк

При n = 2, $M(XF_2) = 47$ г/моль, A(X) = 9, бериллий

При n = 3, $M(XF_3) = 31,3$ г/моль, такого фторида не существует.

Таким образом, X – бериллий, так как соединения AsF не существует.

2. Определим минерал Y. Представим его формулу в виде $(BeO)_x(Al_2O_3)_y(SiO_2)_z$, тогда:

$$x: y: z = \frac{14}{25}: \frac{19}{102}: \frac{67}{60} = 0,56: 0,186: 1,117 = 3: 1: 6.$$

То есть формула минерала $(BeO)_3(Al_2O_3)_1(SiO_2)_6$ или $Be_3Al_2Si_6O_{18}$ – это минерал берилл, который используется для промышленного получения бериллия и его солей, а также в ювелирном деле в качестве драгоценных камней (изумруд – берилл с примесями железа, хрома и ванадия; аквамарин – берилл с примесью железа).

3. Формулы веществ:

$$X_1 - BeO$$
, $X_2 - Be_3N_2$, $X_3 - BeCl_2$, $X_4 - Na_2[Be(OH)_4]$, $X_5 - BeF_2$

3. Уравнения реакций:

[1]
$$2Be + O_2 = 2BeO$$

[2]
$$3Be + N_2 = Be_3N_2$$

[3 или 4]
$$BeO + 2HCl = BeCl_2 + H_2O$$

$$[3 \text{ или } 4]$$
 $Be_3N_2 + 8HCl = 3BeCl_2 + 2NH_4Cl$

[5 или 6] BeO +
$$2$$
NaOH + H_2 O = Na_2 [Be(OH)₄]

[5 или 6]
$$Be_3N_2 + 6NaOH + 6H_2O = 3Na_2[Be(OH)_4] + 2NH_3$$

[7]
$$Be + F_2 = BeF_2$$

[8]
$$BeF_2 + 2NaF = Na_2[BeF_4]$$

[9]
$$BeF_2 + Mg = MgF_2 + Be$$

Определение элемента X с расчетом	1 56
(без расчета: 0,5 б)	1,56.
Формула минерала Ү	0,56.
Название минерала Ү	0,56.
Применение минерала Ү	0,56.
Φ ормулы веществ $X_1 - X_5$	5x0,56.=2,56.
Уравнения реакций 1-9	9x0,56.=4,56.
ОПОТИ	106.

Задача №10-4

1. Представим жидкий углеводород Γ как $C_x H_v$, для него

$$\omega(H) = y / (12x + y) = 0.0769,$$

откуда х = у, что соответствует простейшей формуле СН.

Учитывая, что Γ вступает в реакцию бромирования в присутствии катализатора, можно сделать вывод, что Γ – бензол C_6H_6 .

Если при окислении **A** образовалась одноосновная кислота, то она будет вступать в реакцию нейтрализации по уравнению:

$$R-COOH + KOH = R-COOK + H_2O$$

 $n(KOH) = V(p-pa) \times \omega(KOH) / M(KOH) = 11.2 \times 0.05 / 56 = 0.01$ моль

Тогда n(R-COOH) = n(KOH) = 0.01 моль

M(R-COOH) = 1.22 / 0.01 = 122 г/моль

M(R) = 122 - M(COOH) = 122 - 45 = 77 г/моль, что соответствует $R = C_6H_5$ и подтверждает ранее сделанные выводы о веществе Γ .

Таким образом, **Б** – **бензойная кислота** C_6H_5COOH , а **В** – **бензоат калия** C_6H_5COOK , при сплавлении которого с твердым КОН происходит декарбоксилирование с образованием бензола.

Бромирование бензола в присутствии катализатора приводит к образованию Д – **бромбензола** C_6H_5Br , взаимодействие которого с бромэтаном в присутствии натрия дает E – **этилбензол** C_6H_5 – C_2H_5 .

Бромирование этилбензола при облучении идет по боковой цепи с образованием вещества $\mathcal{K}-1$ -бром-1-фенилэтана C_6H_5 -СНВгСН₃, дегидрогалогенирование которого спиртовым раствором щелочи приводит к образованию двойной связи и образованию вещества \mathbf{A} – стирола $\mathbf{C}_6\mathbf{H}_5$ -СН=СН₂.

Тогда полимер X, из которого изготовлены корпуса ручек – **полистирол**.

Таким образом, Х – полистирол

A – стирол C_6H_5 –CH= CH_2

 \mathbf{F} – бензойная кислота $\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{COOH}$

B – бензоат калия C_6H_5COOK

 Γ – бензол C_6H_6

 $_{\rm I}$ – бромбензол ${
m C_6H_5Br}$

E – этилбензол C_6H_5 – C_2H_5

 \mathbf{W} — 1-бром-1-фенилэтан $\mathbf{C}_{6}\mathbf{H}_{5}$ — \mathbf{CHBrCH}_{3}

(названия приводить необязательно)

2. Уравнения реакций:

COOH
$$+ 2KMnO_4 + 3H_2SO_4 \longrightarrow + CO_2 + 2MnSO_4 + K_2SO_4 + 4H_2O$$

$$COOH \qquad COOK$$

$$+ KOH \longrightarrow + H_2O$$

$$COOK$$

$$+ KOH \longrightarrow + K_2CO_3$$

$$Br$$

$$+ Br_2 \xrightarrow{AlBr_3} + HBr$$

$$Br$$

$$+ C_2H_5Br + 2Na \longrightarrow + 2NaBr$$

$$Br$$

$$+ Br_2 \xrightarrow{hv} + HBr$$

$$Br$$

$$+ KOH \xrightarrow{cnupt} + KBr + H_2O$$

(поскольку в реакциях не затрагивается бензольное кольцо, допускается вместо рисования кольца писать C_6H_5)

3. По условию требуется получить

$$n(C_6H_5COOH) = 61 / 122 = 0.5$$
 моль

Исходя из приведенного выше уравнения реакции,

$$n(стирола) = n(C_6H_5COOH) = 0.5$$
 моль

 $m(стирола) = 0.5 \times 104 = 52$ г, следовательно, требуется деполимеризовать такую же массу полистрирола.

Для этого потребуется корпусов ручек

$$N(ручек) = 52 / 5.2 = 10 штук$$

Разбалловка

Структурные формулы веществ \mathbf{X} и $\mathbf{A} - \mathbf{Ж}$	8×0,56.=46.
Уравнения реакций (1)–(8)	8×0,56.=46.
Расчет количества ручек	26.
ОЛОТИ	10 б.

Задача №10-5

1. Обозначим формулу углеводорода **X** как C_xH_y . Тогда схема сгорания будет иметь вид: $C_xH_y \to xCO_2 + y/2H_2O$

При температуре 68.25°C (341.25К) молярный объем газа будет равен

$$V_m = 22.4 \times 341.25/273 = 28$$
 л/моль

$$n(CO_2) = V / V_m = 8.4 / 28 = 0.3$$
 моль,

$$n(C) = n(CO_2) = 0.3$$
 моль

$$n(H_2O) = m / M = 7.2 / 18 = 0.4$$
 моль,

$$n(H) = 2n(H_2O) = 0.8$$
 моль

$$x : y = n(C) : n(H) = 0.3 : 0.8 = 3 : 8$$

Получаем, что углеводород $X-C_3H_8$

Тогда, вещество Y - пропен C_3H_6

Структурные формулы веществ Х и У:

$$X - H_3C-CH_2-CH_3$$

$$Y - H_3C-CH-CH_2$$

Уравнение реакции дегидрирования:

$$C_3H_8 \leftrightarrow C_3H_6 + H_2$$

2. Исходное количество пропана n = 4.4/44 = 0.1 моль

При 200°С (473K): $n(C_3H_8) =$ **0.08 моль**, $n(C_3H_6) = n(H_2) =$ **0.02 моль**

$$p(C_3H_8) = nRT/V = 0.08*8.31*473/1 = 314.5 \text{ kHa} = 3.145 \text{ fap}$$

$$p(C_3H_6) = p(H_2) = 0.02*8.31*473 = 78.6 \text{ к}\Pi a =$$
0.786 бар

При 300°С (573K):
$$n(C_3H_8) = 0.01$$
 моль, $n(C_3H_6) = n(H_2) =$ **0.09 моль**

$$p(C_3H_8) = nRT/V = 0.01*8.31*573 = 47.62 \ \kappa\Pi a = \textbf{0.476 бар}$$

$$p(C_3H_6)=p(H_2)=0.09*8.31*573=428.55\ \kappa\Pi a=$$
 4.286 бар

3.
$$K_{p(473)} = 0.786*0.786 / 3.145 = 0.196$$

$$K_{p(573)} = 4.286*4.286/0.476 = 38.59$$

4. Изменение энтальпии реакции можно найти по формуле:

$$\Delta H = \frac{R \cdot T_1 \cdot T_2 \cdot \ln \left(K_2 / K_1 \right)}{T_2 - T_1}$$

$$\Delta H = \frac{8.314 \cdot 473 \cdot 573 \cdot \ln{(38.59/0.196)}}{100} = 119035 \ Дж/моль = 119.035 кДж/моль$$

5. Из соотношения $\Delta_{\rm r}G = \Delta_{\rm r}H - T\Delta_{\rm r}S$ получим:

$$\Delta_{\rm r} S = (\Delta_{\rm r} H - \Delta_{\rm r} G) / T$$

При
$$T = 473$$
К $\Delta_r G = -RT \ln K_p = -8.31*473 \ln(0.196) = 6405.5$ Дж/моль $\Delta_r S = (119035 - 6405.5) / 473 = 238.1 Дж/(моль · К)$

Брутто-формула X	0,56.
Структурные формулы веществ Х и У	2x0,56.=16.
Уравнение реакции дегидрирования Х	0,56.
Состав равновесной смеси (моль) при 200°C	16.
Состав равновесной смеси (моль) при 300°C	16.
Парциальные давления всех компонентов (бар) при 200°C	16.
Парциальные давления всех компонентов (бар) при 300°C	1б.
Константы равновесия К _р реакции дегидрирования	2х1б.=2б.
Тепловой эффект реакции дегидрирования ($\Delta_r H$)	16.
Изменение энтропии реакции дегидрирования	16.
ОЛОТИ	10 б.

Задания 11 класса

Представлен один из возможных вариантов решения заданий

Задача №11-1

1. Кратчайшее расстояние соответствует половине телесной диагонали куба, следовательно, объем элементарной ячейки равен $(2r/\sqrt{3})^3 \approx 31.18 \text{ Å}^3$.

 $_{\rho} = \frac{1.66 \cdot M \cdot z}{V},$ где $\rho -$ плотность кристаллического вещества, г/см $^{3};$ M-молярная

масса вещества, г/моль; Z — число формульных единиц, содержащихся в одной элементарной ячейке; V — объем элементарной ячейки, \mathring{A}^3 .

Для ОЦК Z = 2, следовательно, $M \approx 95.9$. M = Mo.

Описание структуры оксида говорит о том, каждый атом Мо связан с 6 атомами кислорода, причем каждый кислород "принадлежит" атому Мо на 1/2. А = MoO_3 .

Присутствие только тетраэдрических ионов в структуре B — указание на то, что $B = (NH_4)_2 MoO_4$.

Изменение степени окисления Мо в условиях описанной реакции не происходит.

Из рисунка видно, что состав аниона можно выразить формулой $[Mo_8O_{24}(O_2)_2(H_2O)_2]^{4-}$.

Очевидно, что противоионами могут быть только катионы аммония. По данным о структуре можно определит $M(C)=1396\ r/моль$, что соответствует формуле $(NH_4)_4[Mo_8O_{24}(O_2)_2(H_2O)_2]\cdot 4H_2O$ 2.

$$2Mo + 3O_2 = 2MoO_3 \tag{1}$$

$$MoO_3 + 2NH_3 \cdot H_2O = (NH_4)_2 MoO_4$$
 (2)

$$8(NH_4)_2MoO_4 + 2H_2O_2 + 12HNO_3 =$$
(3)

 $(NH_4)_4[Mo_8O_{24}(O_2)_2(H_2O)_2]\cdot 4H_2O + 12NH_4NO_3 + 2H_2O$

Установление металла М, вещества С	2x26.=46.
Установление формул веществ А и В, лиганда	3x16.=36.
Написание уравнений реакций (1), (2)	
Написание уравнений реакций (3)	2x0,56.=16.
(без уравнивания – 1 балл, схема без участия азотной	26.
κ ислоты — 0 баллов)	
ОЛОТИ	10 б.

Задача №11-2

1. Начнем с определения элемента X. Для получения простого вещества, образованного X, используется реакция фторида с магнием

$$XF_n + (n/2)Mg = X + (n/2)MgF_2$$

где п – валентность элемента Х.

По уравнению реакции

$$\frac{m(XF_n)}{M(XF_n)} = \frac{n}{2} \cdot \frac{m(Mg)}{A(Mg)} \Rightarrow M(XF_n) = \frac{2m(XF_n) \cdot A(Mg)}{n \cdot m(Mg)} = \frac{2 \cdot 2,35 \cdot 24}{1,2n} = \frac{94}{n}$$

При n = 1, M(XF) = 94 г/моль, A(X) = 75, мышьяк

При n = 2, $M(XF_2) = 47$ г/моль, A(X) = 9, бериллий

При n = 3, $M(XF_3) = 31,3$ г/моль, такого фторида не существует.

Таким образом, X – бериллий, так как соединения AsF не существует.

2. Определим минерал Y. Представим его формулу в виде $(BeO)_x(Al_2O_3)_y(SiO_2)_z$, тогда:

$$x: y: z = \frac{14}{25}: \frac{19}{102}: \frac{67}{60} = 0,56: 0,186: 1,117 = 3: 1: 6.$$

То есть формула минерала $(BeO)_3(Al_2O_3)_1(SiO_2)_6$ или $Be_3Al_2Si_6O_{18}$ – это минерал берилл, который используется для промышленного получения бериллия и его солей, а также в ювелирном деле в качестве драгоценных камней (изумруд – берилл с примесями железа, хрома и ванадия; аквамарин – берилл с примесью железа).

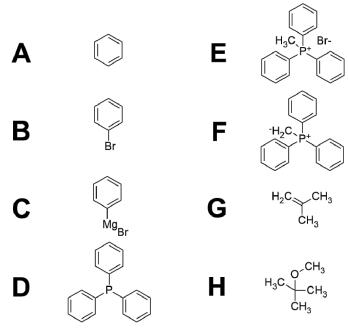
3. Формулы веществ:

$$X_1 - BeO$$
, $X_2 - Be_3N_2$, $X_3 - BeCl_2$, $X_4 - Na_2[Be(OH)_4]$, $X_5 - BeF_2$

- 3. Уравнения реакций:
- [1] $2Be + O_2 = 2BeO$
- [2] $3Be + N_2 = Be_3N_2$
- [3 или 4] BeO + 2HCl = BeCl₂ + H₂O
- [3 или 4] $Be_3N_2 + 8HC1 = 3BeCl_2 + 2NH_4C1$
- [5 или 6] $BeO + 2NaOH + H_2O = Na_2[Be(OH)_4]$
- [5 или 6] $Be_3N_2 + 6NaOH + 6H_2O = 3Na_2[Be(OH)_4] + 2NH_3$
- [7] $Be + F_2 = BeF_2$
- [8] $BeF_2 + 2NaF = Na_2[BeF_4]$
- [9] $BeF_2 + Mg = MgF_2 + Be$

Определение элемента X с расчетом	1 56
(без расчета: 0,5 б)	1,56.
Формула минерала Ү	0,56.
Название минерала Ү	0,56.
Применение минерала Ү	0,56.

Φ ормулы веществ $X_1 - X_5$	5x0,56.=2,56.
Уравнения реакций 1-9	9x0,56.=4,56.
ОЛОТИ	10б.


Задача №11-3

1. Определим вещество **A** по массовым долям. На углерод приходится 92,26%, оставшимся элементом, вероятно, является водород из-за малой массовой доли.

	Углерод	Водород
Массовая доля, %	92,26	7,74
Мольная доля	7,68	7,74
Соотношение	1	1

Поскольку соотношение элементов равно 1:1, то можно подумать на ацетилен или иные ненасыщенные углеводороды. Однако в случае ненасыщенных связей не требуется наличие каких-либо катализаторов, а в условии протекании реакции указано присутствие бромида железа (3). Значит, исходное вещество является ароматическим и это бензол состава C_6H_6 .

В таком случае вещества А-Н имеют следующие формулы:

Для структуры C возможно представление в виде катиона и аниона. Для структуры F возможно представление в виде незаряженной частицы с пятивалентным атомом фосфора.

- 2. Вместо гидрида натрия можно использовать какое-либо иное сильное основание, например, алкиллитиевые производные (RLi), реактивы Гриньяра (RMgX), амиды (R_2NNa), алкоголяты (RONa).
- 3. Уравнение реакции камфоры с реагентом Виттига:

Разбалловка

Изображение структур веществ А-Н	8х1б.=8б.
Два примера оснований для превращения вещества E в F	2x0,56.=16.
Уравнение реакции превращения камфоры под действи-	16.
ем реагента F	
ОПОТИ	10б.

Задача №11-4

I. H F , также стоит зачесть иные галогенбензолы HO — KOH HO — H_2O

3. I

5.
$$CO_2 + KH \xrightarrow{150^{\circ}C, p} O \xrightarrow{HCI} O \xrightarrow{-KCI} H OH$$

Разбалловка

Уравнение реакции (1)	1б.
Уравнения реакций (2), (3)	2x0,56.=16.
Уравнения реакций (4)–(7)	
(Полный балл ставят и за двухстадийную схему синте-	
за с указанием побочных соединений, например:	
	4x26.=86.
ОПОТИ	10б.

Задача №11-5

1) $\mathbf{X} - \text{COCl}_2$ — фосген или хлорокись углерода $\mathbf{Y} - \text{Fe}(\text{CO})_5$ — пентакарбонил железа

Фосген ранее (в Первую мировую войну) применялся как боевое отравляющее вещество.

2)
$$5CO + Fe = Fe(CO)_5$$

 $CO + Cl_2 = COCl_2$

3)

$$V = \Delta c/\Delta t = > \Delta c = V \cdot \Delta t = 2.5 \cdot 10^{-3} \cdot 5 = 12.5 \cdot 10^{-3} \text{ моль/л} = 12.5 \text{ моль/м}^3$$

Изначально $[COCl_2]=0 \Longrightarrow \Delta c = [COCl_2]$ после 5 мин

По уравнению Менделеева-Клайперона pV=nRT => p= RTn/V

$$p(COCl_2) = \Delta cRT = 12.5 \cdot 8.314 \cdot 403 = 4.2 \cdot 10^4 \text{ } \Pi a$$

Пусть p_o – исходное давление, то $p(Cl_2)$ = $0.5p_o$

Общее давление в сосуде после реакции

$$2p_{a_{TM}} = p_o - p(COCl_2)$$

 $2 \cdot 10^5 = p_o - 4.2 \cdot 10^4 => p_o = 2.4 \cdot 10^5$ Па
 $p(Cl_2) = 1/2$ $p_o = 1.2 \cdot 10^5$ Па
 $C(Cl_2) = p/RT = 0.0358$ моль/л

4)
$$COCl_2 + H_2O = CO_2 + 2HCl$$

 $COCl_2 + 4NaOH = Na_2CO_3 + 2NaCl + 2H_2O$
 $COCl_2 + 4NH_3 + 2H_2O = 2NH_4Cl + (NH_4)_2CO_3$

Формулы Х и У	1+1=2б.
Применение фосгена	0,56.
Уравнения реакций	1+1=2б.
Давление хлора	1,56.
Концентрация хлора	16.
Уравнения реакций	1х3б.=3б.
ОПОТИ	106.